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one may take a generating set with the smallest pos- 
sible value of n or prefer a set with larger n if it is 
more symmetric. Different choices of n will lead to 
different abstract groups. 

(b) The n vectors v Ci) give a representation of the 
point group by n-dimensional matrices (of integers): 

gv (i) = ~ v~J) DJi(g). ( A.1) 

(c) Because the phase functions are linear to within 
additive integers, it is enough to specify their values 
at the n generating vectors. For each point-group 
operation g these values constitute an n-vector ~g 
with components 

~(i)= ~g (v(i)). (A.2) g 

(d) Because each component of a given phase- 
function vector ~g is determined only to within an 
additive integer, ~g can be represented by any mem- 
ber of the entire n-dimensional set Sg of vectors whose 
components differ from those of ~g by integers. 

(e) Given any two representatives ~g and q~h from 
Sg and Sh, it follows from (3.6) that a vector from 
Sg h is given by 

~gh = ~gD( h ) + ~h. ( A.3 ) 

( f )  Elements of the space group consist of ordered 
pairs (g, ~g), (g, ~g), (g, ~ ) , . . .  where g is any 
point-group element and qbg, ~g,  ~ g , . . .  are all the 

vectors in Sg. The combination law for two such pairs 
is the semidirect product 

(g, qog)(h, Cbh)=(gh, qbgD(h) + ~h). (3.4) 

This work was begun during a visit to Cornell by 
TLH supported in part by the National Science 
Foundation through Grant DMR86-13368 and also 
through an Alfred P. Sloan Foundation Fellowship. 
DAR was supported by an Office of Naval Research 
Fellowship. NDM was supported in part by the 
National Science Foundation through the Cornell 
Materials Science Center, Grant DMR85-16616-A01. 

References 

BRUIJN, N. G. DE (1981). Proc. K. Ned. Akad. Wet. Ser. A, 84 
(= Indagationes Mathematicae, 43), 39-52, 53-66. 

DUNEAU, M. & KATZ, A. (1985). Phys. Rev. Lett. 54, 2688-2691. 
EESER, V. (1986). Acta Cryst. A42, 36-43. 
G,~.HEER, F. & RHYNER, J. (1986). J. Phys. A, 19, 267-277. 
HARDY, G. H. & WRIGHT, E. M. (1979). An Introduction to the 

Theory of Numbers, 5th ed. Oxford Univ. Press. 
KRAMER, P. & NERI, R. (1984). Acta Cryst. A40, 580-587. 
LEV1NE, D. & STEINHARDT, P. J. (1984). Phys. Rev. Lett. 53, 

2477-2480. 
MERMIN, N. D., ROKHSAR, D. S. &WRIGHT, D. C. (1987). Phys. 

Rev. Lett. 58, 2099-2101. 
ROKHSAR, D. S., WRIGHT, D. C. &.MERMIN, N. D. (1988). Acta 

Cryst. A44, 197-211. 
SCHECHTMAN, D., BEECH, I., GRAT1AS, D. & CAHN, J. W. 

(1984). Phys. Rev. Lett. 53, 1951-1953. 
SOCOEAR, J. E. S., STEINHARDT, P. J. & LEVINE, P. (1985). Phys. 

Rev. B, 32, 5547-5550. 

Acta Cryst. (1988). A44, 688-691 

The P r o g r a m  S A P I  and its Applications. 
I. A u t o m a t i c  S e a r c h  of Pseudo-Systematic Extinction for Solving Superstructures 

Bv FAN HAI-FU, YAO JIA-XING AND QIAN JIN-ZI 

Institute of Physics, Academia Sinica, Beijing, China 

(Received 11 March 1987; accepted 6 April 1988) 

Abstract 
The name SAPI is an abbreviation of'structure analy- 
sis programs with intelligent control'. It may also be 
read inversely as 'Institute of Physics, Academia 
Sinica'. SAPI is based on MULTANSO, but differs 
from it by a number of features. These will be 
described in a series of papers. The present paper 
describes an algorithm which can distinguish super- 
structures from ordinary structures by automatically 
discovering the pseudo-systematic extinction rule in 
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reciprocal space. This algorithm enables SAPI to 
handle superstructures in a fully automatic way, 
leading to a complete solution in favourable cases. 

Introduction 
Superstructures are distinguished by their pseudo- 
translational symmetry, which leads to the effect of 
pseudo-systematic extinction, i.e. there exists two 
classes of reflections, one systematically strong, the 
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other systematically weak. The phases of the second 
class of reflections are usually very difficult to deter- 
mine. A direct method (Fan Hai-fu, Yao Jia-xing, 
Main & Woolfson, 1983) has been proposed and 
incorporated into the M U L T A N 8 0  program 
(Main, Fiske, Hull, Lessinger, Germain, Declercq & 
Woolfson, 1980). With the modified M U L T A N 8 0 ,  
superstructures can be solved by inputing the pseudo- 
systematic extinction rule into the program. In order 
to make the procedure fully automatic, an algorithm 
was recently developed to search automatically for 
the pseudo-systematic extinction rule in reciprocal 
space. The philosophy of this algorithm and some 
examples are given in this paper. 

Index relations for the systematically strong reflections 

We consider only the pseudo-systematic extinction 
due to the existence of a sublattice. If several possible 
sublattices exist simultaneously, only one of them 
should be considered. If all the possible sublattices 
are compatible with each other, the one with the 
smallest unit cell will be accepted. If the possible 
sublattices are incompatible, we should consider that 
one which results in the lowest average intensity of 
the systematically weak reflections. 

A sublattice can be described by three primitive 
translation vectors, t~, t2 and t3, at least one of which 
should be a pseudo-translation vector of the true 
lattice, i.e. 

t = T / p ,  (1) 

where T = re ,a+  m2b+ m3c is the shortest lattice vec- 
tor parallel to t, and p is an integer greater than 1. 
Accordingly (see Fan Hai-fu & Zheng Qi-tai, 1982) 
all reflections with H . t  ( H = h a * + k b * + I c * )  not 
equal to an integer will be systematically weak, 
leading to an effect of pseudo-systematic extinction. 
In other words all the strong reflections will satisfy 
the relation 

H . t = n ,  (2) 

where n denotes an arbitrary integer. Equivalently 
we have 

ml h + mEk + real = pn, (3) 

where m~, m 2 and m 3 are integers without a common 
divisor other than 1. This is the index relation that 
should be satisfied by all the systematically strong 
reflections. 

Since three vectors are sufficient to define a sublat- 
tice, no more than three index relations should be 
used for defining the group of 'strong' reflections. 

Finding index relations for the systematically strong 
reflections 

There are three kinds of index relations, which, 
respectively, are those with one, two or three of the 

coefficients ml, m2 and m3 not equal to zero. We 
should try firstly to find those index relations having 
only one coefficient not equal to zero. This is done 
as follows. 

Calculate the average E 2 values for different indices 
h. Reject those h's with average E 2 smaller than a 
certain limit; in our program the default value of this 
limit is set to 0.5. Find the greatest common divisor 
p for all the remaining h's. If there exist several 
incompatible values of p, only the one giving the 
smallest average E 2 value for the systematically weak 
reflections should be accepted. Repeat the above pro- 
cess to find index relations of the types k - - p ' n  and 
l = p"n. 

Index relations with two or three coefficients not 
equal to zero can be found as follows: 

(1) Calculate the index difference, Ah, for each 
pair of reflections having k and l in common. 

(2) Sum the E 2 values for all pairs of reflections 
having the same Ah. Reject those Ah's corresponding 
to an average E 2 smaller than a certain limit. 

(3) Find the greatest common divisor p~ for the 
remaining Ah's. 

(4) Use a similar procedure to find P2 for Ak and 
P3 for Al respectively. 

(5) If two or more of p~, P2 and P3 equal 1, then 
there will be no index relation with two or three 
coefficients not equal to zero for the 'strong' reflec- 
tions. 

(6) If only two of pi ,  P2 and P3, say p~ and P3, are 
greater than 1, then there are two possible relations, 
i.e. 

m~h + m31= pn or m~h - m31= pn, 

where m, -- p /p~ ,  m 3 = P/P3.  Calculate the average E 2 
for the 'weak' reflections corresponding to each of 
the above relations. Reject any relation which makes 
the average E 2 greater than a certain limit, or reject 
the one which results in a larger average E 2 when 
both average E 2 ' s  a r e  smaller than the limit. 

(7) If pl ,  P2 and P3 are all greater than 1, then the 
following relations are all possible: 

rnlh + m2k + m31 = pn 

ml h + rn2k = pn 

m l h  + m3[ = pn 

m2k -t- m31 = pn. 

Reject any one of the above relations if the corre- 
sponding average E 2 for the 'weak' reflections is 
greater than a certain limit. 

Before any relation is finally accepted, it should be 
checked for independence. This includes the follow- 
ing considerations: 

(1) One-index relations are the most fundamental 
relations and should be accepted first. 
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(2) If there already exists a one-index relation, say 
h =p~n, then any multi-index relation including h, 
say m~h + m2k+ m31 = p n  with m~ not equal to zero, 
should not be accepted, provided p~ = p / m ~ .  

(3) Since the combination of  a two-index relation 
and a three-index relation gives rise to a one-index 
relation, they are not al lowed to be accepted simul- 
taneously. The one resulting in a larger average E: 
for the 'weak'°reflections should be rejected. 

(4) After the above considerations, any index rela- 
tion should be rejected if it can be a result of  the 
centred lattice or of  other relations not yet rejected. 

Set up index relations for the systematically weak 
reflections 

Suppose that the index relations found for the 'strong' 
group are 

m]h + m2k + m31 = pzn 

m4h + rn5k + m61 = p2n 

m7h + msk + m91 = p3n; 

The index relations for each 'weak' group can be 

rnzh + m2k + m31 = pzn + p'~ 

m4h + m5k + m61 = p2 n + P'2 

m7h + m8k + m91 = p3 n + P'3 

where p'~, p~ and p~ are integers equal to or less than 
p~, p~ and P3 respectively. In addition, there should 
not be more than two of  p'~, p~ and p~ equal to the 
corresponding value of  p~, p: and P3. 

Finally, some 'weak' reflection group found as 
above may actually contain no reflections in it. Such 
a group will be rejected after a final check. 

The above algorithm has been included in $API85 
(Yao Jia-xing, Zheng Chao-de,  Qian Jin-zi, Han Fu- 
sen, Gu Yuan-xin & Fan Hai-fu, 1985) as a subroutine 
named A UTOGP.* 

* A listing of the subroutine A UTOGP has been deposited with 
the British Library Document Supply Centre as Supplementary 
Publication No. SUP 44885 (7 pp.). Copies may be obtained 
through The Executive Secretary, International Union of Crystal- 
lography, 5 Abbey Square, Chester CH1 2HU, England. 

then there will be at most PzP~P3-1 'weak' groups. 

| ' !  HWHR GACEFICO3)2 R3 Z:6 TIPSEUDO)~/4 , **  
SYBNETRY CLqss: ~EIARON~L 
SPACE SSO~P: R 3 

t t !  AUTOI~TIC SEARCH FOR THE PSEUDO - SYGTENATIC EXTINCTION H i  

109 L~RGEST E**2 BEFORE REOUALING 
H K L E--2 H K L Eli2 H R L Eel2 H K L E**2 N K L E--2 H K L 
I 0.44 1.05 I 0-~ 0.80 I 0.35 0.93 i 0.32 2.29 l 0-23 O.e7 I 0-20 
1 0 16 4.45 1 0 2~ 2.46 I 0 ~I 1.14 1 O 37 1.26 l 0 40 I,42 I 0 43 
2 -I-33 0.91 2 -1-24 2.53 
2 -I 39 0.90 2 0.40 1.43 
2 0 35 0,B5 3 -2-3F 1.39 
3 -2 32 2.31 ] -2 35 l. IO 
3 -I 28 2.39 ~ -I 31 1.02 
3 O 12 2.87 3 0 24 2.63 
4 -3 -D 4.22 4 -3 4 2.99 
4 -2 O 6.52 4 -2 12 2.66 
4 -I 20 2.76 4 -1 29 I.O3 
i 0 28 2.:~ O -4-12 3.93 
5 -3 23 l,OD 5 -2-23 1.22 
5 -I 0 4.21 5 -1 12 3.68 

2 -I-t2 3,92 2 -1 0 4.02 2 "I 12 ~.92 2 -I 24 
2 O'2B 2.65 2 0.16 2.ei 2 0 -4 5,64 2 O S 
] "2-31 0.99 3 "2-28 2.60 3 "2"16 4.27 ~ -2 -4 
3 -1-35 1.07 3 -1-32 2.38 3 -I-20 3.37 "I "e 
3 - I  37 1.25 ] 0 . ~  1.57 3 0.~3 1.11 0-24 
3 0 ~3 0.92 3 0 ~6 1.59 4 -3-32 2.26 -3-2'9 
4 -3 16 4.34 4 -3 28 2.73 4 -3 31 1.12 -2-24 
# -2 24 2.56 4 -I-31 1.14 4 "I-28 2.81 -I'16 
4 -I 32 2.18 4 0-29 0.90 4 0-20 2.90 O -8 
O -4 0 3.9B 5 -4 12 3.55 5 -3"16 4.57 -x -4 
5 -2-20 L I 7  5 -2 -8 5.99 5 "2 4 2.32 -2 16 
S O-4 4.34 5 0 8 2.65 6-~  0 5.15 

Ee*2 H K L E,t2 H K L E**2 
2.84 I 0 - 8  4.36 I O X 1.95 
0.90 2 -I-G9 0.94 2 -1-36 1.72 
2.47 2 -I ~ 0.92 2 -1 36 1.62 
3.31 2 0 20 2.12 2 0 32 2.14 
3.70 3 -2 8 3,OR 3 -2 20 3.51 
3.61 3 -I 4 3.05 3 -I 16 4.07 
2.49 ~ 0-12 4.91 3 0 0 3.4~ 
1.04 4 -3-23 0.79 4 -3-20 2.90 
2.81 4 -2-21 0.B4 4 -2-12 2.99 
4.82 4 -l -4 3,46 4 -I 8 3.56 
4,2~ X 0 4 3.el 4 O 16 2.87 
2,85 5 -3"D 4.70 5 -3 20 2.95 
4.11 5 -1-21 0.81 5 -I-12 3.89 

H SIENA K GIGP~ L SI6MA DELTA N SIENA DELTA t SIENA DELTA L 51Gff~ 
E,e2 E*'2 Em*2 E,e2 E**2 Eo2 

1 26.7 1 O0. X 1 O.O 1 0.0 1 O.O 1 0.0 
2 44,8 2 58.2 2 O.O 2 O.O 2 0.0 2 0.0 
3 66.7 3 43.7 3 0.0 3 71,8 3 73.1 ~ 79.7 
4 79.7 4 IL.5 _4 34.1 4 0.0 4 0.0 4 0,0 
5 64.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 
6 5.2 6 0.0 6 O.O 6 0.0 6 O.O 6 19.7 
7 O.O 7 0.0 7 O.O 7 0.0 7 0.0 7 0.0 
8 0.0 8 O.O 8 39.7 8 0.0 8 O.O 8 0.0 
9 O.O 9 O.O 9 O.O 9 O.O 9 0.0 9 56.2 

TO 0.0 10 0.0 10 O.O I0 0.0 IO 0.0 10 O.O 
li 0.0 11 O,O 11 O,O II 0.0 11 0.0 II 0.0 
12 O.O 12 0.0 12 36.3 12 0.0 12 O.O 12 429.5 
l~ 0,0 t~ q,0 II 0,0 L$ 0.0 15 O.G 13 G.~ 
]4 O.O 14 0.0 14 O,O IX O.O Iq 0,0 14 0.0 
15 O.O 15 0.0 15 O.O 15 0.0 15 O.O 15 78.2 
16 0.0 IG 0.0 16 36,3 16 0.0 16 O.O 16 0.0 

H ,  PGEURO-THANOLATIONAL SYMMETRY H~S BEEN POUND BY THE PROORAN ** l  

I l l  NOPJIALIZATIOH IS TO BE RESTARTED *** 

REFLECTIONS MILL BE RESCACEO ACCORD!NO TO 4 INDEX GROUPS 

ORGUP I L : x ~J 

GROUP 2 L : 4 N • : 

GAOL rP ~ L = 4 N + 2 

Fig. 1. Result for the structure of HWHK, BaCeF(CO3)2: t = c/4. 

* * e FEIELEGEMITE PDROSBS3 P21tA * * * 
;YNffURY CLASS: BOROCLINIC 
SPACE GROUP: P 2118 

He AUTOHAIIC SEARCH FOR THE PSEUDO " SYSTENAT]C EITINCTION H i  

t **  PSEUDO-TRANSLATIONAL SYMMETRY HAG BEEN FOUNO BY THE PflssRAN H!  
*** NOENALIZATION IS TO BE RESTARTED H* 

REFLECTIONS WILL BE REGCALED ACCOROIND TO 6 INDEX GROUPS 

GROUP I H = 2 H 
K 3N 

GROUP 2 H = 2 N 
t = ~ N + l  

GROUP .~ H = 2 N 
K = 3 N * 2  

GROUP 4 H = 2 N * 1 
K = 3 N  

GROUP 5 H = 2 N x I  

GROUP 6 H = 2 N  ~' ] 
z : T R , 2  

(a) 

SYI~ETRY CLASS: 
UPOUE 6RDUP: 

* * * * NGNL GR4NALIINRO.'hlO D~2 Z:D * * * * 
ORTHORHOBOID 
S O N 2  

m*m AUTOMATIC SEARCH FOR THE PSEUDO - SYSTERATIC EXTINCTION He 

* i t  PSEUDO-TOANSLATIO~AC SYMMETRY HAS BEEN FOUND OY THE PRO6RAM *** 
) t *  NORNACIZATION IS TO BE RESTARTED *t*  

REFLECTIONS WILL BE REOCALED A~ORDING TO 4 [NBEZ GROUPS 

GROUP l L : 2 N  
H + 2 ~ = 4 N  

GROUP 2 L : 2 N 
H * 2 K : 4 N * 2  

GROUP 3 L : 2 N + [  
R + 2 R = 4 N + I  

GROUP 4 L = 2 N * I  
H 2 1 : : 4 N * ~  

(b) 

* ,  CHAS OUH7DSN3R P 2l 21 21 Z=4 i)m 
ORTHORHOROIC SYNM( TRy CLASS: 

SPACE GROUPz P 21 21 2] 

*** AUTONMIC SEARCH FOR THE PSEUDO " SYSTEMATIC EXTINCTION *** 

*H, PSEUDO'TRANSLATIONAL SYMMETRY H~S BEEN FOUND SY THE PRO,6RAR I.t* 
** t  NORRALIZM]ON IS TO.BE RESTARTED *H 

EFLEETIORG N]LL BE RESCALEO ACCORDING TO 2 INDEX GROUPS 

GROUP .~ ~4 ) L = 2 N * 1 

(c) 

Fig. 2. Results for (a) freielebenite, AgPbSbS3: t t = a/2, t 2 = b/3; 
(b) NSNL, LiNaSr4(NbO3)~o: t~=c/2, t 2=a/4+b/2; (c) 
SHAS, CsHTKN3Os: t = a/2+ b/2+ c/2. 
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Some examples are shown in Figs. 1 and 2. In these 
examples the user needs only to input the diffraction 
intensities, space-group symbol, chemical formula 
and cell dimensions in the usual way. The program 
can then tell what kind of pseudo-systematic extinc- 
tion exists. 
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Abstract 

A minimum-function subroutine is included in the 
SAPI program. This enables the superposition of 
either two Patterson maps or a Patterson map with 
an E map. Both kinds of superposition can effectively 
combine Patterson and direct methods leading to 
results better than those from either of the two alone. 
Practical examples are given to elucidate the efficiency 
of such a combination. 

The Patterson superposition method is very powerful 
if a few atoms, especially heavy atoms, in the asym- 
metric unit are known with certainty. On the other 
hand, direct methods are very efficient in obtaining 
an E map with the highest peaks corresponding to 
true atoms. However, an E map often contains some 
spurious peaks which cause trouble in the interpreta- 
tion. Hence Patterson superposition based on an E 
map may be a powerful procedure for fragment 
development, especially when the known part of the 
structure cannot dominate the phases. 

There are two ways to combine the information 
from an E map and the Patterson map: 

(1) Calculate a Patterson minimum function 
according to some Harker and non-Harker peaks, the 
positions of which are derived from a few highest 
peaks on the E map (minimum Patterson Patterson, 
MPP). 

(2) Calculate a minimum function by superimpos- 
ing a Patterson map onto an E map with the Patterson 
origin coinciding successively with the highest peaks 

of the E map (minimum E map Patterson, MEP). 
Schenk (1972) first proposed such a kind of combi- 
nation. 

SAPI85 (Yao Jia-xing, Zheng Chao-de, Qian Jin-zi, 
Han Fu-sen, Gu Yuan-xin & Fan Hai-fu, 1985) pro- 
vides facilities for both the above procedures, which 
are best explained using the following three examples. 

Example 1. MPP on eight known atoms 
Crystal data: chemical formula C52H24Fe8028 , 

space group P1, unit-cell parameters a = 14.660, b = 
12.919, c=9 .086 /~ ,  a = 9 2 . 4 8 ,  /3=115.20, y =  
112.02 °, Z = 1. In this structure there are eight heavy 
atoms (Fe) in the asymmetric unit. A default run of 
SAPI85 was first executed. In the resulting E map, 
the eight highest peaks all correspond to true atoms 
but one of them was not iron. The largest spurious 
peak appeared as the tenth peak, and there are 12 
spurious peaks within the top 33 peaks on the E map. 
Hence the E map is difficult to interpret. A Patterson 
minimum function was then calculated according to 
the positions of the eight highest peaks on the E map. 
This resulted in a much improved map, in which the 
eight highest peaks all correspond to Fe atoms, and 
the largest spurious peak appeared as the 34th peak. 
In other words, all the top 33 largest peaks correspond 
to true atoms. For comparison, a weighted Fourier 
map was calculated with phases from the eight highest 
peaks of the E map, all assumed to be Fe atoms. It 
resulted in a map with 11 spurious peaks within the 
top 33 peaks and the largest spurious peak appeared 
as the 13th peak. The above results are summarized 
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