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one may take a generating set with the smallest pos-
sible value of n or prefer a set with larger »n if it is
more symmetric. Different choices of n will lead to
different abstract groups.

(b) The n vectors v'”) give a representation of the
point group by n-dimensional matrices (of integers):

gv“) — Z v(j)Dﬁ(g).

(¢) Because the phase functions are linear to within
additive integers, it is enough to specify their values
at the n generating vectors. For each point-group
operation g these values constitute an n-vector @,
with components

(A1)

DY =@, (v\"). (A2)

(d) Because each component of a given phase-
function vector @, is determined only to within an
additive integer, @, can be represented by any mem-
ber of the entire n-dimensional set S, of vectors whose
components differ from those of @, by integers.

(e) Given any two representatives @, and @, from
S, and S,, it follows from (3.6) that a vector from

S,n is given by

¢gh=¢gD(h)+q)h' (A.3)

(f) Elements of the space group consist of ordered
pairs (g, ®,), (g P3), (g Pg),... where g is any
point-group element and @,, @, Py, ... are all the
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vectors in S,. The combination law for two such pairs
is the semidirect product

(8, Dg) (h, @) =(gh, @,D(h)+ &,). (A4)
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The Program SAPI and its Applications.
I. Automatic Search of Pseudo-Systematic Extinction for Solving Superstructures

By FaAN HAIl-Fu, YAOo JIA-XING AND QIAN JIN-zI

Institute of Physics, Academia Sinica, Beijing, China

(Received 11 March 1987, accepted 6 April 1988)

Abstract

The name SAPI is an abbreviation of ‘structure analy-
sis programs with intelligent control’. It may also be
read inversely as ‘Institute of Physics, Academia
Sinica’. SAPI is based on MULTANSO, but differs
from it by a number of features. These will be
described in a series of papers. The present paper
describes an algorithm which can distinguish super-
structures from ordinary structures by automatically
discovering the pseudo-systematic extinction rule in
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reciprocal space. This algorithm enables SAPI to
handle superstructures in a fully automatic way,
leading to a complete solution in favourable cases.

Introduction

Superstructures are distinguished by their pseudo-
translational symmetry, which leads to the effect of
pseudo-systematic extinction, ie. there exists two
classes of reflections, one systematically strong, the

© 1988 International Union of Crystallography
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other systematically weak. The phases of the second
class of reflections are usually very difficult to deter-
mine. A direct method (Fan Hai-fu, Yao Jia-xing,
Main & Woolfson, 1983) has been proposed and
incorporated into the MULTANS0 program
(Main, Fiske, Hull, Lessinger, Germain, Declercq &
Woolfson, 1980). With the modified MULTANS0,
superstructures can be solved by inputing the pseudo-
systematic extinction rule into the program. In order
to make the procedure fully automatic, an algorithm
was recently developed to search automatically for
the pseudo-systematic extinction rule in reciprocal
space. The philosophy of this algorithm and some
examples are given in this paper.

Index relations for the systematically strong reflections

We consider only the pseudo-systematic extinction
due to the existence of a sublattice. If several possible
sublattices exist simultaneously, only one of them
should be considered. If all the possible sublattices
are compatible with each other, the one with the
smallest unit cell will be accepted. If the possible
sublattices are incompatible, we should consider that
one which results in the lowest average intensity of
the systematically weak reflections.

A sublattice can be described by three primitive
translation vectors, t,, t, and t;, at least one of which
should be a pseudo-translation vector of the true
lattice, i.e.

t=T/p, (1)

where T = m,a+ m,b+ m,c is the shortest lattice vec-
tor parallel to t, and p is an integer greater than 1.
Accordingly (see Fan Hai-fu & Zheng Qi-tai, 1982)
all reflections with H.t (H=ha*+kb*+Ic*) not
equal to an integer will be systematically weak,
leading to an effect of pseudo-systematic extinction.
In other words all the strong reflections will satisfy
the relation

H.t=n, (2)

where n denotes an arbitrary integer. Equivalently
we have
myh+ myk+ m;l = pn, (3)

where m,, m, and m; are integers without a common
divisor other than 1. This is the index relation that
should be satisfied by all the systematically strong
reflections.

Since three vectors are sufficient to define a sublat-
tice, no more than three index relations should be
used for defining the group of ‘strong’ reflections.

Finding index relations for the systematically strong
reflections

There are three kinds of index relations, which,
respectively, are those with one, two or three of the
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coefficients m,, m, and m; not equal to zero. We
should try firstly to find those index relations having
only one coefficient not equal to zero. This is done
as follows.

Calculate the average E” values for different indices
h. Reject those h’s with average E” smaller than a
certain limit; in our program the default value of this
limit is set to 0-5. Find the greatest common divisor
p for all the remaining h’s. If there exist several
incompatible values of p, only the one giving the
smallest average E value for the systematically weak
reflections should be accepted. Repeat the above pro-
cess to find index relations of the types k= p’'n and
I=p"n.

Index relations with two or three coefficients not
equal to zero can be found as follows:

(1) Calculate the index difference, Ah, for each
pair of reflections having k and / in common.

(2) Sum the E? values for all pairs of reflections
having the same Ah. Reject those Ah’s corresponding
to an average E* smaller than a certain limit.

(3) Find the greatest common divisor p, for the
remaining Ah’s.

(4) Use a similar procedure to find p, for Ak and
p; for Al respectively.

(5) If two or more of p,, p, and p; equal 1, then
there will be no index relation with two or three
coefficients not equal to zero for the ‘strong’ reflec-
tions.

(6) If only two of p,, p, and ps, say p, and p;, are
greater than 1, then there are two possible relations,
ie.

mih+msl=pn or mh—m,l=pn,
where m, = p/p,, my= p/ p;.Calculate the average E’
for the ‘weak’ reflections corresponding to each of
the above relations. Reject any relation which makes
the average E’ greater than a certain limit, or reject
the one which results in a larger average E* when
both average E”s are smaller than the limit.

(7) If py, p» and p; are all greater than 1, then the
following relations are all possible:

mh+ myk+ m;l=pn
mh+ myk =pn
myh+myl=pn
myk +m;l=pn.

Reject any one of the above relations if the corre-
sponding average E’ for the ‘weak’ reflections is
greater than a certain limit.

Before any relation is finally accepted, it should be
checked for independence. This includes the follow-
ing considerations:

(1) One-index relations are the most fundamental
relations and should be accepted first.
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(2) If there already exists a one-index relation, say
h=p,n, then any multi-index relation including h,
say mh+ myk+ mil = pn with m, not equal to zero,
should not be accepted, provided p,=p/m,.

(3) Since the combination of a two-index relation
and a three-index relation gives rise to a one-index
relation, they are not allowed to be accepted simul-
taneously. The one resulting in a larger average E’
for the ‘weak’’reflections should be rejected.

(4) After the above considerations, any index rela-
tion should be rejected if it can be a result of the
centred lattice or of other relations not yet rejected.

Set up index relations for the systematically weak
reflections

Suppose that the index relations found for the ‘strong’
group are

mh+myk+msl=pn

myh+ msk+ mgl=p,n

msh+ mgk + myl = psn;

then there will be at most p, p,p;—1 ‘weak’ groups.
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Fig. 1. Result for the structure of HWHK, BaCeF(CO;),: t = ¢/4.

The index relations for each ‘weak’ group can be
myh+ myk+ myl=pn+p|
msh+ msk+ mgl = p,n+p;
m,h+ mgk+ myl = psn+p}

where p1, p5 and p; are integers equal to or less than
D1, P> and p, respectively. In addition, there should
not be more than two of pi, p; and p; equal to the
corresponding value of p,, p, and ps.

Finally, some ‘weak’ reflection group found as
above may actually contain no reflections in it. Such
a group will be rejected after a final check.

The above algorithm has been included in SAPI85
(Yao Jia-xing, Zheng Chao-de, Qian Jin-zi, Han Fu-
sen, Gu Yuan-xin & Fan Hai-fu, 1985) as a subroutine
named AUTOGP.*

* A listing of the subroutine AUTOGP has been deposited with
the British Library Document Supply Centre as Supplementary
Publication No. SUP 44885 (7 pp.). Copies may be obtained
through The Executive Secretary, International Union of Crystal-
lography, 5 Abbey Square, Chester CH1 2HU, England.
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Fig. 2. Results for (a) freielebenite, AgPbSbS;: t,=a/2, 1,=b/3;

(b) NSNL, LiNaSr(NbO,)o: f,=c/2, t,=a/d+bj2; (c)
SHAS, CsH,KN,Os: t=a/2+b/2+c/2.
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Some examples are shown in Figs. 1 and 2. In these
examples the user needs only to input the diffraction
intensities, space-group symbol, chemical formula
and cell dimensions in the usual way. The program
can then tell what kind of pseudo-systematic extinc-
tion exists.
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II. The Combination of Patterson Superposition and Direct Methods

By FAN Har-Fu, QIAN JIN-zI, YAO JIA-XING, ZHENG CHAO-DE AND Hao QuAN

Institute of Physics, Academia Sinica, Beijing, China
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Abstract

A minimum-function subroutine is included in the
SAPI program. This enables the superposition of
either two Patterson maps or a Patterson map with
an E map. Both kinds of superposition can effectively
combine Patterson and direct methods leading to
results better than those from either of the two alone.
Practical examples are given to elucidate the efficiency
of such a combination.

The Patterson superposition method is very powerful
if a few atoms, especially heavy atoms, in the asym-
metric unit are known with certainty. On the other
hand, direct methods are very efficient in obtaining
an E map with the highest peaks corresponding to
true atoms. However, an E map often contains some
spurious peaks which cause trouble in the interpreta-
tion. Hence Patterson superposition based on an E
map may be a powerful procedure for fragment
development, especially when the known part of the
structure cannot dominate the phases.

There are two ways to combine the information
from an E map and the Patterson map:

(1) Calculate a Patterson minimum function
according to some Harker and non-Harker peaks, the
positions of which are derived from a few highest
peaks on the E map (minimum Patterson Patterson,
MPP).

(2) Calculate a minimum function by superimpos-
ing a Patterson map onto an E map with the Patterson
origin coinciding successively with the highest peaks
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of the E map (minimum E map Patterson, MEP).
Schenk (1972) first proposed such a kind of combi-
nation.

SAPI8S5 (Yao Jia-xing, Zheng Chao-de, Qian Jin-zi,
Han Fu-sen, Gu Yuan-xin & Fan Hai-fu, 1985) pro-
vides facilities for both the above procedures, which
are best explained using the following three examples.

Example 1. MPP on eight known atoms

Crystal data: chemical formula Cs,H,FegOaq,
space group P1, unit-cell parameters a = 14-660, b =
12:919, ¢=9-086 A, «=92:48, B=11520, y=
112-02°, Z =1. In this structure there are eight heavy
atoms (Fe) in the asymmetric unit. A default run of
SAPI85 was first executed. In the resulting E map,
the eight highest peaks all correspond to true atoms
but one of them was not iron. The largest spurious
peak appeared as the tenth peak, and there are 12
spurious peaks within the top 33 peaks on the E map.
Hence the E map is difficult to interpret. A Patterson
minimum function was then calculated according to
the positions of the eight highest peaks on the E map.
This resulted in a much improved map, in which the
eight highest peaks all correspond to Fe atoms, and
the largest spurious peak appeared as the 34th peak.
In other words, all the top 33 largest peaks correspond
to true atoms. For comparison, a weighted Fourier
map was calculated with phases from the eight highest
peaks of the E map, all assumed to be Fe atoms. It
resulted in a map with 11 spurious peaks within the
top 33 peaks and the largest spurious peak appeared
as the 13th peak. The above results are summarized
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